DEFORMATION OF A FLOWING POWDER
WITH NONVISCOUS FRICTION
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A model for an ideally plastic body is extended to a powder medium with nonorthogonal slip
lines; it is shown that some properties of the ideal-plasticity model are not essential and
should not be generalized, namely, the coincidence between the characteristics for the velo-
city and stress distributions, and independence of the velocity distribution from the possible
differences in the shears on the areas. A closed system of equations is derived, and the
properties of the discontinuous solutions are discussed; boundary-value problems are for-
mulated. It is shown that the stability-loss lines are arcs of circles (surface of a circular
cylinder) in the case of bank stability.

1. Consider the planar deformation of an unconsolidated medium in the limiting state:
T = sin go + k 1.1)

where o and T are the invariants of the stress tensor, while ¢ and k are constants of the material. On the
area o (where ¢ is the angle between the area and the largest compressive stress ¢y) the tangential and
normal stresses Tey and oa are related by
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The structure of (1.2) reflects the law of friction between the particles: if Ty and oy satisfy (1.2)
for certain critical coefficients * ¢4° and +cy°, then relative slip between the particles is possible; if ¢4 (o)
and c; (@) do not equal the critical values, the contacts between the particles are below the limiting state,
and the deformation on the area remains stable. Let cij(@) = ¢1°, ca(@) = cp° for & = &y > 0, where @ is a
known constant. The values of @y may be dependent on the properties of the material and on the loading
conditions below the limiting state [1, 2].

Then in the limiting state of (1.1) the deformation mechanism is anisotropic: on areas tangential to
the lines xo'(x1) = tg(f + @() one can have unbounded relative displacements between particles, while on all
other areas the displacements between particles are small [3] (9 is the inclination of o1 to the Ox; axis,
while Oxixy is a Cartesian coordinate system). Such a deformation mechanism may be interpreted as
follows: in the limiting state, the medium is divided up by lines x' = tg(0 +ay) into regular elements, and
subsequent deformation occurs by rotation, compression, and slip of the elements, one with respect to the
other. To construct a closed system of equations to describe the deformation one needs to formulate the
requirements that the system has to meet; only one specification is necessary in this case [4]: the system
must describe ininvariant form the processes that occur on the areas xp' = tg(® + ). Possible additional
conditions are not necessary, including the condition that the characteristics for the velocity and stress
fields coincide,

The deformation kinetics will be dependent on the law of friction between the elements; there are two
essentially different modes of frictions: viscous and normal {3] or nonviscous. In viscous friction, the
shear rate between elements is dependent on nonlocal factors (behavior or neighboring elements and the
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z m g boundary conditions) and on local factors (stresses acting on the slip area),
Az In the nonviscous case, the friction is dependent on the stresses only up to

the onset of slip; subsequently, the velocity is not dependent on stresses and

P can be restricted only by nonlocal factors. In a hardening plastic solid, one

gets the first case, whereas the second occurs in an ideally plastic body. In

what follows we restrict ourselves to a model for an unconsolidated medium
A, with viscous friction. The distribution of ¢ and @ will be assumed fixed and

g Z;  known from the solution of the boundary-value problem for the stresses [5].

g

2. Let vilxixy) and vy(xgxs) be the velocity distribution in the Cartesian
Fig. 1 coordinate system; by 8 we denote the incrementsin the velocities and coordi-
nates on passing from element to element, while by 6 we denote the increments within an element, The
shear velocities on the areas AB and BC (Fig, 1) may be characterized via the invariant quantities
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where w = 1/2 (6vy/ x4 — 6v1/8x3), as slip on the nonorthogonal areas AB and BC does not cause any volume
change; the change must be due to the sum 8vy/8p + Ovy, /9q, and this becomes
dv, | Ov, [ oo | due)
-(97-{———aq——sm2a0\ml—+-——/ (2'2)
If we assume that the velocity components vy and vy are continuous together with their derivatives,
we get the estimate
v, o, . dwy Ove
T2 5 = sin 20 [$2 4+ 92 40 (D) 2.3)
where I is the distance between slip lines, Such estimates are impossible for (2.1), because the discon~-
tinuity at the side of the elements in the tangential velocities is in essence due to the deformation, as is the
possible independence of the shear velocities Yqp, and Ypg then w must be left as an independent function
for I — 0. The increments @ in that case may be considered as differentials, which enables us to describe
the behavior of a discontinuous medium by means of the mechanics of continuous media for small distances

between the lines of discontfinuity.

Let (A, M) be the natural parameters of the slip lines xy' = tg{0 + o), while w1 and wy are the pro-
jections of the velocity on the normals to the sides of an element. As the friction has been assumed non-
viscous, the velocity of an element (A, Az) may be bounded only by the velocities of elements (M dAg, A
dXg), and the condition for continuity in vy and vy goes with the condition for possible slip on the sides of
an element to imply that only information about the velocity wy normal to the side of an element can be
transmitted along the line A:

v(;\ll + d}\:l)'i (}\,1) = Wy (;\/1) — (1)(7&1) ¢os 2(10 — & (7\41)
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where €4 is the compression rate of the element along the line A, Similarly, along X
dws w1 - cos 2aw; 00 y
m+——m—m—mcos2ao+82=0 (2-5)

It follows from (2.4) and (2.5) that the velocity distribution is, in general, dependenton the distribution
of w, which reflects the possible differences in the slip area functioning., An exception must be made for
an ideally plastic medium (ideally coupled [5]), for which &y = /4 and for which (2.4) and (2.5) are closed
no matter what the equation for w. It can be shown that the condition for the stress- and strain-rate tensors
to be coaxial in the ideal plasticity case is equivalent to the condition for symmetry in compressibility: €1 =
€9; if then € = €4 + £ = (), then (2.4) and (2.5) become equations for an incompressible ideally plastic
medium [6].
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Let € be known as a function of the hydrostatic pressure, while & = €4/, is either low from additional
considerations or is equal to 1; (2.5) reflects the possibility of slip from the line xg' =tg(® + o), but the
line xo' =tg(® + ) will be a characteristic of the system for wi, ws, and w only if the equation for w con-
tains no derivatives along Ay. If this is not so, weak discontinuities in the velocity will propagate along a
line different from the slipline I follows from (2.5) that locally a line of weak discontinuity consists of
parts x;' = tg(® + ), but the rotation of the elements causes the propagation direction for the weak dis-
continuities to deviate from the slip line. An ideally plastic material is an exception in that respect. If
oy = /4 we have w cos 2 a9 = 0, and the transfer of the slip line due to rotation occurs along the slip line
itself, Then the characteristics of the velocity distribution for an ideally plastic material coincide with
slip lines (if these are defined as in Sec. 1) and with the characteristics of the stress distribution .

Consider the equations needed to close (2.4) and (2.5); if none of the sliplines is specially distinguished
in the loading history of material below the limit or in the boundary conditions for the limiting state, we
can assume that the shear rates Yqp and ¥pq average over a certain time interval are equal. In that case
w = Y/3(Bvy fBxy— Bvy/ 0x,) and the characteristics of the velocity distribution coincide with the lines of
largest tangential stress xp' = tg(f + n/4); if here A = 1, the stress- and strain-rate tensors will be
coaxial.

We now consider another limiting case where the slip occurs along one of the lines A and Az, for
instance A3, Then Ypq = 0 and the complete system of equations takes the form
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System (2.6) and @.7) is of hyperbolic type. If K4 and My are the natural parameters of the charac-
teristics Xo'=1g(0 — o) and xp' = = ctg (6 — ay) for the system, with uy, uy the projections of the velocity
characteristics, while f1 and f; are the projections of the velocity on the slip line A; and the path orthogonal
to this, than (2.6) and (2.7) may be put at

owy . .

T Ry = £y sin 2a,

Bus 00 eicos?2u0 e 2.8
s +i o sindw 2.8)
af1 80

B fz'a_p'f = o sin 2a,

The formulation of the boundary-value problems is determined by the system (2.6) and 2.7); if both
velocity components are specified along the boundary x; = xa(xy), ¥ = arc tgx', the formulation will be
correct if the boundary does not have characteristic directions for ¥4 and pe. The boundary conditions should
satisfy the first two relations in (2.8) along the characteristics. Let w be given as the boundary. Only some
combination of the partial derivatives with respect to the velocity may be specified at the boundary in addi-
tion to this condition, for instance Pp:

o vy, Bva vy ,\ ., 1
( 01 + o= x2)COSB + ( o T Tm 22 sinB =5 P

The correctness or otherwise is dependent not only on (2.6) and (2.7) but also on the form of the boun-
dary condition for the velocity; the formulation will be correct if

sy 0080+ a—B)
Z Foso—w—p 80— %)

with the boundary conditions related as follows for x; = tg(6— ag):
©sin(® — gy — P)+ &sin (0 + ap — f) = — Ps

If f=6—ay+n/2 we must have as follows for any position of the boundary

08 (8 — ag — v) sin 20, + & c0s 20, 5in (0 + @y — V) -+ &sin (0 — ag — V) = sin 20,P;
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Then the Cauchy, Goursat, and various mixed problems will he
r\J\/\\ correct for system (2.6) and 2.7).
z 4, 7 Az

¢° % 1 The velocities appear in (2.6) and (2.7) in differential form,
while w appears algebraically, one has to consider weak discontinuities
in the velocity and strong discontinuity in w together with discussing
45 ; the discontinuous solution.. Let £4, &€, and € be continuous; weak dis-
i continuities in the velocities are possible only on the characteristics
Ay i J xy' = tg@— ay), x' =~ ctg(@— ag). The roles of the characteristics will
then be different: a weak velocity discontinuity occurs on a slip line
while w remains continuous, while on a line orthogonal to the slip line
a weak discontinuity in the velocity involves a strong discontinuity in
. Analogous conclusions apply for strong velocity discontinuities and
for the integral of infinite discontinuity in w. If the stresses are discontinuous on a certain curve, then the
velocities will also be discontinuous. The discontinuities will satisfy (2.6) and (2.7) in the sense of
generalized solutions [7].

Fig. 2

The case of slip on A is reduced to the following by replacing o by -@y.

3. We consider as an example the stability of a sloping bank bounded by the smooth press AiA; (Fig.
2). To AjA,, and AjA, there are applied loads such that ¢ = ¢° = const on AjA,, 0= 0° exp 2tg XY= op—
7/2) on AyA4, where g = 1/4— ¢/2, 0p< $° < ©/2; in that case, a continuous stress distribution can be con-
structed in the region A1AsAzAy [5]: o= ¢°, 0= 1/2, in AjAsA;, and 0= o’exp 2tg @ (Y= o=~ T/2) 0 = = oy
in AjAsA,, where (r, ¥) is a polar coordinate system. We assume that the loss of stability means that the
press tips over with a certain angular velocity £ > 0; vo = 2(17xy), x5 = 0, |x4|= 1, and we also assume
that in region A1AsA3A, only the areas of the family xp' = tg (0 + ag) are ready to slip, while the adhesion
conditions are met at the boundary AsAsA,. As the line ApA3A, is not a characteristic of the velocity dis-
tribution, the conditions on AjAsA, imply that the region AsAsAjAcAs will remain immobile. On line AAzAg
the condition for continuity in the normal velocity is met, the solution in the regions AjAyAs and AtAzAq ¢
takes the following form: (€1 = & = Q)

v, = Qetg oy (1 — zy -+ ctg aum,)

vy = Q (1 — z; + otg agz) 3.1)
v, =0, :
R

VeE

It follows from (3.1) that strong discontinuity in the tangential velocity can be realized only on the
surface AsA; of a circular cylinder and the area AgAs.

4, In closing (2.4) and (2.6) it was assumed that the slip occurs along the family of A, lines. We
can consider the case ofalternating slip on both possible families M and Xy, in which case the velocities vy,
vy, and w are split up into two components, each of which satisfies equations of the form (2.6) and (2.7).
The division of the boundary conditions into components may then not be unique, but the ambiguity is re-
moved by additional data for detailed cases; it may be that a solution exists for certain boundary conditions
only for a certain devision by components; when one is seeking boundary conditions that provide a trivial
velocity distribution, it is sufficient to consider all possible styles of slip, and so on.

System (2.6) and (2.7) is unaltered if we assume that the mediumis dilated in accordance with some
presentlaw;inthat case €1 and £€; will be dependent on the corresponding shear.

5, We consider now the interpretation of (2.6); it can be shown that the contribution from side AB
{Fig. 1) to the volume change in an element is represented by the invariant quantity
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_ o« — . L
dg © 03 20.0 2 \ dap dag T2 dxa | O, 1 (5 1)
N sin2x{ dvy |, dr2\ , cos2¥ { dva v\ <9 :
R P o e e R A P T R
Similarly for side C
v sin 20/ dv bv2 " 20/ 8 P
n — [Ov  Gva’  cos2 | o1 v
—p T @cos 20y = —— T T om T \ T Tt (5.2)
sin 290

4 5 (Qvy [ 0xq + Ov, [ Biy) — 0520 [ 2 (O, 7 02y
— A1/ 0x,) -+ @ cos Za,

533



We equate -€; and -€4 to the right sides of (5.1) and (5.2) to get (2.6); in that interpretation, equations
(2.6) allow generalization to the case of the axially symmetric total limiting states [8].

See [9] for a detailed bibliography for the various models involving slip on limiting lines.
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